20-ка посетителей: - отсутствуют
Лекция 1.
Функции нескольких переменных. Геометрическое изображение функции двух переменных. Линии и поверхности уровня. Предел и непрерывность функции нескольких переменных, их свойства. Частные производные, их свойства и геометрический смысл.
Лекция 2.
Дифференцируемость функции нескольких переменных. Дифференциал, его свойства. Применение дифференциала к приближенным вычислениям. Дифференцирование сложных функций. Инвариантность формы дифференциала.
Лекция 3.
Неявные функции, условия их существования. Дифференцирование неявных функций. Частные производные и дифференциалы высших порядков, их свойства.
Лекция 4.
Касательная плоскость и нормаль к поверхности. Геометрический смысл дифференциала. Формула Тейлора для функции нескольких переменных. Производная функции по направлению. Градиент и его свойства.
Лекция 5.
Экстремумы функций нескольких переменных. Необходимое условие экстремума. Достаточное условие экстремума. Условный экстремум. Метод множителей Лагранжа. Нахождение наибольших и наименьших значений.